Genetic Programming for Combining Classifiers

نویسنده

  • W. B. Langdon
چکیده

Genetic programming (GP) can automatically fuse given classifiers to produce a combined classifier whose Receiver Operating Characteristics (ROC) are better than [Scott et al., 1998b]’s “Maximum Realisable Receiver Operating Characteristics” (MRROC). I.e. better than their convex hull. This is demonstrated on artificial, medical and satellite image processing bench marks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cancer Prediction Using Diversity-Based Ensemble Genetic Programming

Combining a set of classifiers has often been exploited to improve the classification performance. Accurate as well as diverse base classifiers are prerequisite to construct a good ensemble classifier. Therefore, estimating diversity among classifiers has been widely investigated. This paper presents an ensemble approach that combines a set of diverse rules obtained by genetic programming. Gene...

متن کامل

Genetic Programming of Heterogeneous Ensembles for Classification

The ensemble classification paradigm is an effective way to improve the performance and stability of individual predictors. Many ways to build ensembles have been proposed so far, most notably bagging and boosting based techniques. Evolutionary algorithms (EAs) also have been widely used to generate ensembles. In the context of heterogeneous ensembles EAs have been successfully used to adjust w...

متن کامل

Data Mining by Symbolic Fuzzy Classifiers and Genetic Programming

There are various techniques for data mining and data analysis. Data mining is very important in the information retrieval areas especially when the data amounts are very large. Among them, hybrid approaches combining two or more algorithms gain importance as the complexity and dimension of real world data sets grows. In this paper, we present an application of evolutionary-fuzzy classification...

متن کامل

Learning to Assemble Classifiers via Genetic Programming

This article introduces a novel approach for building heterogeneous ensembles based on genetic programming (GP). Ensemble learning is a paradigm that aims at combining individual classifiers outputs to improve their performance. Commonly, classifiers outputs are combined by a weighted sum or a voting strategy. However, linear fusion functions may not effectively exploit individual models’ redun...

متن کامل

Ensemble Genetic Programming for Classifying Gene Expression Data

Ensemble is a representative technique for improving classification performance by combining a set of classifiers. It is required to maintain the diversity among base classifiers for effective ensemble. Conventional ensemble approaches construct various classifiers by estimating the similarity on the output patterns of them, and combine them with several fusion methods. Since they measure the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001